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Abstract. We find a unitary operator which asymptotically diagonalizes the Tomonaga-Luttinger Hamil-
tonian of one-dimensional spinless electrons. The operator performs a Bogoliubov rotation in the space
of electron-hole pairs. If bare interaction of the physical electrons is sufficiently small this transformation
maps the original Tomonaga-Luttinger system on a system of free fermionic quasiparticles. Our repre-
sentation is useful when the electron dispersion deviates from linear form. For such situation we obtain
non-perturbative results for the electron gas free energy and the density-density propagator.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)

1 Introduction

Bosonization is a standard approach to the problem of
interacting electrons in one dimension (1D) [1,2].
Bosonization maps the low-energy spectrum of the
Tomonaga-Luttinger (TL) model on the spectrum of free
bosons.

In this paper we discuss a new method of treating such
system. We explicitly construct a unitary operator U di-
agonalizing TL Hamiltonian. Our unitary transformation
maps the TL model on a system of free fermionic quasipar-
ticles. The description of the TL model in terms of these
quasiparticles has several advantages over bosonization, as
we will see below.

The diagonalizing procedure is closely related to the
bosonization. The operator U can be thought of as a Bo-
goliubov transformation in the space of particle-hole pair
excitations. Alternatively, one can describe the action of U
as a sequence of bosonization, Bogoliubov transformation
which diagonalizes the bosonic Hamiltonian and further
refermionization (Fig. 1).

When the dispersion of the physical electrons is lin-
ear both the quasiparticles and the bosons offer equally
good description of the TL model. If the non-linear terms
are substantial the free boson representation breaks down.
The fermionic quasiparticles show more resilience toward
deviations from the linear dispersion. They remain free as
long as the bare interaction constant is sufficiently small.

This latter property of the quasiparticle representa-
tion allows for non-perturbative calculation of the free en-
ergy and the density-density correlation function for the
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Fig. 1. Commutative diagram explains the relation between
transformation U , and the bosonization. ‘BT’ stands for the
Bogoliubov transformation of bosons.

TL model with the non-linear dispersion. We believe that
these two results are new.

When the bare electron dispersion is linear the quasi-
particle representation could be used to determine the
single-electron Green’s function. It coincides with the
Green’s function obtained by other methods.

The existence of the quasiparticles does not contradict
to the fact that the single-electron Green’s function of
TL model has no pole. The quasiparticles in TL model
has zero overlap with the physical electrons:

√
Z = 0.

Therefore, it is convenient to think about TL model as
Z = 0 Fermi liquid [3].

The paper is organized as follows. We diagonalize the
TL Hamiltonian in Section 2. In Section 3 we offer an
intuitive explanation to the method. In this section all
technical complications are disregarded in order to create
an integral view. The density-density propagator is de-
rived in Section 4. The single-particle Green’s function is
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calculated in Section 5. Section 6 is reserved for discussion.
Certain technical details can be found in Appendices.

2 Diagonalization of TL Hamiltonian

The TL model Hamiltonian is given by:

H = Hkin +Hint, (1)

Hkin = ivF

∫ L/2

−L/2

dx
(

:ψ†
L∇ψL: − :ψ†

R∇ψR:
)
, (2)

Hint =
∫
dxdx′ĝ(x− x′)ρL(x)ρR(x′), (3)

ρL,R =:ψ†
L,RψL,R: . (4)

The chirality label ‘L’ corresponds to left-moving elec-
trons, the label ‘R’ corresponds to right-moving electrons.
The interaction of the electrons of the same chirality is
ignored since up to irrelevant operators such interaction
simply renormalizes the value of the Fermi velocity vF.
The symbol : . . . : denotes normal ordering of the field op-
erators ψ. A brief discussion of the normal ordering pro-
cedure we use in this paper is given in Appendix A.

It is assumed that the cut-off of (1) is infinite. To re-
move ultraviolet divergences of the theory without cut-off
we replace usual zero-range interaction (ĝ(x) = g0δ(x)) by
interaction acting over a finite range. Specifically, ĝ(x) =
g0δΛ(x) where δΛ(x) is a broadened version of the delta-
function: its Fourier transform δΛ(q) is such that δΛ(q) = 1
for |q| smaller than some quantity Λ, and δΛ(q) vanishes
quickly for |q| > Λ. The parameter Λ thus defined regu-
larizes ultraviolet divergences of our theory.

It is easy to demonstrate (see, for example, [1]) that
the following commutation relations are obeyed:

[ρpq, ρp′−q′ ] = δpp′δqq′pnq (5)[
ρpq, ψ

†
p′(x)

]
= δpp′e−iqxψ†

p′(x), (6)

where p = +1 for left-moving electrons, p = −1 for right-
moving electrons and

ρpq =
∫
dxe−iqxρp(x), nq =

Lq

2π
. (7)

Using this commutation relations we will show that the
unitary operator

U = eΩ, (8)

Ω =
∑
q �=0

∑
p

αq
p

nq
ρp−qρ−pq (9)

diagonalizes the Hamiltonian (1) except for the zero mode
part. Fortunately, the zero modes

Np = ρpq

∣∣∣
q=0

(10)

are decoupled from other degrees of freedom. Also, their
contribution to the low-energy spectrum is O(1/L).

Since ρ’s are quadratic in ψ the above operator U is
quartic in fermionic operators ψ. In general, it is impossi-
ble to work with such a non-linear object. In our situation,
however, the simplicity of commutation rules (5) and (6)
allows us to diagonalize the Hamiltonian with the help of
U .

In order to transform the interaction term (3) with the
operator U it is enough to observe that the action of U on
the density operator ρpq, q �= 0, is a Bogoliubov rotation:

UρpqU
† = u(αq)ρpq + v(αq)ρ−pq, (11)

u(αq) = uq = cosh(αq), v(αq) = vq = sinh(αq), (12)

u2
q − v2

q = 1. (13)

This result is a simple consequence of the commutation
relation (5). This identity can be derived by a variety of
methods. For example, one can differentiate its left-hand
side with respect to αq for both p = L and p = R and
solve the resultant differential equation system.

The easiest way to transform the kinetic energy term is
to notice that the kinetic energy density can be expressed
as a product of two density operators. The derivation goes
as follows. First, we normal order the product of two den-
sity operators:

ρp(x)ρp(y) = :ψ†
p(x)ψp(x)ψ

†
p(y)ψp(y):

+ sp(x− y) :ψp(x)ψ
†
p(y):

+ sp(x− y) :ψ†
p(x)ψp(y) : +bp(x− y), (14)

sp(x) =
p

2πi (x− ip0)
, (15)

bp(x) = (sp(x))
2
. (16)

As it is explained in Appendix A the normal ordering is
used here to isolate explicitly singular terms of the field
operator products. Now we expand the above identity into
Laurent series with respect to powers of (x − y):

ρp(x)ρp(y) = bp(x− y) +
ip

2π
:ψp(x)∇ψ†

p(x) :

+
ip

2π
:ψ†

p(x)∇ψp(x) : + (irrelevant operators).

(17)

In this expansion an irrelevant operator can be recognized
by a factor of (x− y)n where n > 0. For example, the first
term in (14) is an irrelevant operator:

:ψ†
p(x)ψp(x)ψ†

p(y)ψp(y) :

≈ (x− y)2 :ψ†
p(x)ψp(x)∇ψ†

p(x)∇ψp(x) : . (18)

Indeed, by simple power counting one can verify that its
scaling dimension is equal to d = 4 < 2. Sending y → x in
equation (17), we establish the identity:

ip

2π
(
:ψ†

p(x)(∇ψp(x)) : − :(∇ψ†
p(x))ψp(x) :

)
= lim

y→x
{ρp(x)ρp(y) − bp(x − y)} . (19)
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Thus, it is permissible to write the Hamiltonian (1) in the
form:

H =
πvF
L

∑
pq

(
ρpqρp−q +

gq

2πvF
ρpqρ−p−q

)
, (20)

where gq is the Fourier transform of ĝ(x). For convenience
we explicitly show the zero mode part of the above ex-
pression:

H =
πvF
L

∑
q �=0

∑
p

(
ρpqρp−q +

gq

2πvF
ρpqρ−p−q

)

+
πvF
L

(
N2

L +N2
R

)
+
g0
L
NLNR. (21)

Such splitting is useful since our transformation U does
not act on the zero modes. We now apply U and choose
parameters αq in such a way that the term ρLρR vanishes:

tanh 2αq = − gq

2πvF
, (22)

u2
q =

1
2


1 +

1√
1 − (gq/2πvF)2


 ,

v2
q =

1
2


−1 +

1√
1 − (gq/2πvF)2


 , vqgq < 0.

(23)

The transformed Hamiltonian is:

UHU † =
πvF
L

∑
q �=0

∑
p

(
u2

q + v2
q +

gq

πvF
uqvq

)
ρpqρp−q

+
πvF
L

(
N2

L +N2
R

)
+
g0
L
NLNR (24)

=
πvF
L

∑
pq

(
u2

q + v2
q +

gq

πvF
uqvq

)
ρpqρp−q

+
π (vF − ṽF)

L

(
N2

L +N2
R

)
+
g0
L
NLNR, (25)

ṽF = vF

√
1 −

(
g0

2πvF

)2

. (26)

From now on we will ignore the zero mode contribution
to the Hamiltonian: the above formulas clearly show that
it is small (∼ 1/L) for a macroscopic system. Ultimately,
we have:

UHU †=
πvF
L

∑
pq

(
u2

q + v2
q +

gq

πvF
uqvq

)
ρpqρp−q. (27)

This expression can be re-written in terms of fields ψ. Let
us show how this is done in a technically trivial case of
Λ → ∞ (which is equivalent to ĝ(x) = g0δ(x)). When Λ
is infinite the functions uq, vq and gq are all constants
independent of q. Their values are given by (23) with
gq ≡ g0. Therefore, Hamiltonian (27) is equal to

UHU † =
πṽF
L

∑
pq

ρpqρp−q, (28)

where ṽF is given by (26). Finally, inverting (19), we obtain

UHU † = iṽF

∫
dx
∑

p

p :ψ†
p∇ψp : + const. (29)

These transformations, apart from minor differences, are
equivalent to the refermionization as it is done in [4].

In certain situations, however, it is convenient to have
finite Λ. Then a subtler reasoning is required. It is possible
to prove that:

UHU † = iṽF

∫
dx
∑

p

p :ψ†
p∇ψp :+ (irrelevant operators).

(30)

Such proof is rather technical. It can be found in Ap-
pendix B.

Let us agree that operators with the tilde are transfor-
mations of corresponding operators without the tilde, that
is Õ = U †OU . Then the Hamiltonian can be expressed in
terms of operators ψ̃ as follows:

H = iṽF

∫
dx
∑

p

p : ψ̃†
p∇ψ̃p : + (irrelevant operators).

(31)

The above equation is the desired mapping of TL model
on the model of quasiparticles ψ̃ whose interactions are
small irrelevant operators. Due to the irrelevance of the
interaction the low-energy properties of ψ̃ are those of free
fermions.

Using the developed framework it is possible to dis-
cuss the effect of non-linear dispersion on the spectrum
and correlations of (1). We add an extra term to the TL
Hamiltonian:

H ′ = H +Hnl, (32)

Hnl =
∑

p

∫
dxdx′ĥ(x − x′) :∇ψ†

p(x)∇ψp(x′) : (33)

The subscript ‘nl’ stands for ‘non-linear’ dispersion. Func-
tion hq which is the Fourier transform of ĥ(x) has these
properties:

hq = v′F < vF/Λ for |q| < Λ, (34)
hq < vF/|q| for |q| > Λ. (35)

The second of these two conditions guarantees that for
v′F < vF/Λ the modified kinetic energy pvFq + hqq

2 has
the same sign as the original kinetic energy pvFq. That is,
Hnl does not induce an instability of the ground state by
creating spurious Fermi point.

Condition (34) implies that for small |q| < Λ it is per-
missible to use

Hnl = v′F
∑

p

∫
dx :∇ψ†

p(x)∇ψp(x) : (36)
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instead of (33). The quantity 2v′F is the Fermi velocity
derivative with respect to the momentum.

We need to express Hnl in terms of ψ̃. To do so it
is convenient to rewrite Hnl with the help of density op-
erators ρp rather than field operators ψp. This trick was
already used in (19). It is easy to establish that

v′F
∑

p

:(∇ψ†
p(x))(∇ψp(x)) : − 1

6
∇2ρp(x) =

2πv′F
3

∑
p

lim
y→x

{
ipρp(x)

[
:ψ†

p(y)(∇ψp(y)) :

− :(∇ψ†
p(y))ψp(y) :

]− 4πbp(x− y)ρp(y)
}
. (37)

According to (19) the expression in the square brack-
ets proportional to the product of two density operators.
Thus:

Hnl(x) = v′F
∑

p

:(∇ψ†
p(x))(∇ψp(x)) : − 1

6
∇2ρp(x) =

4π2v′F
3

∑
p

lim
y→x

lim
z→y

{
ρp(x)

[
ρp(z)ρp(y) − bp(z − y)

]

− 2bp(x− y)ρp(y)
}
. (38)

Now we have to substitute ρpq = uρ̃pq + vρ̃−pq for q �= 0
in the above expression. The resultant third order polyno-
mial of ρ̃’s must be rewritten in terms of ψ̃ with the help
of (14) and (38). The final expression for Hnl is:

Hnl =
∑

p

∫
dx
{
ṽ′F : (∇ψ̃†

p)(∇ψ̃p) :

+ ipg̃′ρ̃−p

(
: ψ̃†

p(∇ψ̃p) : − : (∇ψ̃†
p)ψ̃p :

)
+ µ̃ρ̃p

}
.

(39)

The details of the derivation together with the exact
formulas for coefficients ṽ′F, g̃′ and µ̃ can be found in
Appendix C. Here we quote only the expressions which
are valid if the interaction parameter g0 is small. Let
us define α0 as α0 = αq=0. When interaction is small
(α0 ≈ g0/4πvF 	 1) the coefficients are:

ṽ′F − v′F ≈ v′Fα
2
0, (40)

g̃′ ≈ 2πv′Fα0 =
g0v

′
F

2vF
, (41)

µ̃ ≈ γΛ2v′Fα
2
0, (42)

where γ is a non-universal constant of order unity.
The total Hamiltonian H ′ is the sum of H , equation

(31), and Hnl. Due to Hnl the quasiparticle dispersion be-
comes non-linear (the first term of (39)). Also, Hnl intro-
duces additional interactions between the quasiparticles.
The operators corresponding to these interaction (the sec-
ond term in (39)) are O(v′Fg0) and irrelevant. Therefore,
they can be neglected provided that

g̃′Λ/vF 	 1 ⇔ v′Fg0Λ	 v2
F. (43)

The quasiparticles remain free even if the bare dispersion
is not linear as long as the bare interaction is sufficiently
small. Note, that the free boson representation for TL
model is much less tolerant of Hnl. This term is equiv-
alent to cubic interaction between bosons (see Eq. (38)
and [1]). For the bosons to remain free a stricter condi-
tion v′FΛ	 vF has to be satisfied.

Equations (31) and (39) allow us to describe the ther-
modynamics of the electronic liquid with the generic dis-
persion. For example, the free energy equals to

F = T
∑
pk

log
(
1 + e−ε̃p(k)/T

)

=
LT

π

∫
dε̃√

ṽ2
F + 4ṽ′Fε̃

log
(
1 + e−ε̃/T

)
, (44)

where ε̃p(k) = pṽFk + ṽ′Fk
2 is the dispersion of the

quasiparticles. This result is non-perturbative in v′FΛ/vF.
Corrections to the free energy due to the neglected quasi-
particle interaction are O((v′Fg0)

2). Thus, our result for F
is accurate provided that (43) holds true.

The specific heat at constant chemical potential can be
derived from (44) in the limit of low temperature (T 	
ṽ2
F/ṽ

′
F):

C(T ) =
π

3ṽF
T +

14π3(ṽ′F)2

5ṽ5
F

T 3 + O ((ṽ′FT/ṽ2
F)5
)

+ O(g4
0) + O((g̃′)2). (45)

We observe that non-zero dispersion curvature gener-
ates T 3 contribution to the specific heat. (Note: irrele-
vant operators neglected along the way also contribute
to the specific heat. However, their contribution is O(g4

0)
and O((g̃′)2). For small g0 such corrections can be disre-
garded.)

The same result for the specific heat could be obtained
with the help of bosonization technique. There one must
expand the free energy in orders ofHnl. These calculations
are done in Appendix D. They provide an important con-
sistency check for the proposed approach.

3 Non-rigorous overview of the method

We have finished the introduction of our method and
ready to apply it to Green’s function calculations. At this
point we would like to make a break between two rather
technical parts and explain why the method works on in-
tuitive level.

The central issue of this discussion could be loosely
formulated as follows: why the strongly interacting bosons
could be mapped on the weakly interacting fermions, what
kind of ‘cancellation’ of interactions takes place? To an-
swer this question we direct our attention to most essential
aspects of the approach. All technical complications will
be disregarded: we will ignore zero modes, normal order-
ing and assume that Λ = ∞. This makes the following
presentation more transparent.
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Let us start with the bosonized form of the TL Hamil-
tonian, familiar to many researchers [1]:

H ′ = Hkin +Hint +Hnl, (46)

Hkin +Hint =
∫
dx
ṽF
2

{
K (∇Θ)2 + K−1 (∇Φ)2

}
, (47)

Hnl =
∫
dx

2π2v′F
3
√

2

{
(∇Θ+∇Φ)3+(∇Θ−∇Φ)3

}
, (48)

where boson fields Θ and Φ are connected to the density
operators in the usual way:

ρp =
1√
2

(∇Φ+ p∇Θ) . (49)

Tomonaga-Luttinger liquid parameter K is defined below.
For the purpose of this section it is enough to remember
that for small g0 parameter K is close to unity:

1 −K = O(g0). (50)

As we see from (48), the boson interaction is proportional
to v′F. Now we perform the Bogoliubov transformation:

Θ̃ = K1/2Θ, (51)

Φ̃ = K−1/2Φ. (52)

Our Hamiltonian becomes:

H ′ =
∫
dx
ṽF
2

{(
∇Θ̃

)2

+
(
∇Φ̃
)2
}

+
2π2v′F
3
√

2

{(
K−1/2∇Θ̃ + K1/2∇Φ̃

)3

+
(
K−1/2∇Θ̃ −K1/2∇Φ̃

)3 }
. (53)

We rewrite it as follows:

H ′ = Hfree +∆H, (54)

Hfree =
∫
dx
ṽF
2

{(
∇Θ̃

)2

+
(
∇Φ̃
)2 }

+
2π2v′F
3
√

2

{(
∇Θ̃+∇Φ̃

)3

+
(
∇Θ̃ −∇Φ̃

)3
}
, (55)

∆H =
∫
dx

2π2v′F
3
√

2

{(
K−1/2∇Θ̃ + K1/2∇Φ̃

)3

+
(
K−1/2∇Θ̃ −K1/2∇Φ̃

)3

(56)

−
(
∇Θ̃ + ∇Φ̃

)3

−
(
∇Θ̃ −∇Φ̃

)3 }
.

We split the above Hamiltonian into two part for a reason.
The first part Hfree becomes a free quasiparticle Hamilto-
nian upon refermionization. Indeed, the first term in the
curly brackets of (55) refermionizes to become the kinetic
energy of the fermions with linear dispersion, the second
term of (55) becomes q2-correction to the linear disper-
sion.

Refermionized Hamiltonian ∆H contains all the quasi-
particle interaction. It also contains terms quadratic in ψ̃

which renormalize the value of v′F . The important point,
however, is that ∆H is small if g0 is small:

∆H = O((1 −K)v′F) = O(g0v′F). (57)

This can be established by observing that ∆H vanishes
when g0 = 0 ⇔ K = 1. Note also, that ∆H is small if (43)
is satisfied. Power counting shows that ∆H is irrelevant.
Smallness and irrelevance of the quasiparticle interaction
implies that the quasiparticles could be viewed as weakly
interacting.

We could look at our method from a different prospec-
tive. The Hamiltonian H ′ = Hkin + Hint + Hnl in addi-
tion to a quadratic (in ψ) part Hkin has small marginal
operator Hint. Plus, it has an irrelevant operator Hnl

which we want to account for non-perturbatively. Since
perturbation theory in the marginal operator diverges,
we must either sum certain diagrams to all orders or,
as it is done in the theory of superconductivity, perform
a Bogoliubov transformation which kills the undesirable
marginal operator. This is what our transformation U
does: U(Hkin +Hint)U † is quadratic in fermionic fields.

Operator Hnl is quadratic in ψ. In general, however,
operator UHnlU

† does not have to be quadratic. Thus,
after the removal of the marginal operator by the Bo-
goliubov transformation, new interactions between the
quasiparticles are generated. Fortunately, they are irrel-
evant and small. The smallness of the generated inter-
actions becomes obvious if we observe that for small g0
transformation U is close to the identity transformation:
U = 1+O(g0). Thus, the quasiparticle interaction induced
by the action of U on Hnl could be treated perturbatively.
This is the core of the approach we proposed in the pre-
vious Section.

4 Density-density propagator

In this section we will calculate density-density Green’s
function. The derivation of the correlation function for
the total density operator ρ = ρL + ρR is quite simple if
we note that ρ is proportional to the quasiparticle density
operator: ρq = (uq +vq)ρ̃q. Using this identity one obtains
for small |q|:

Dq(τ) = − 1
L
〈Tτ {ρq(τ)ρ−q(0)}〉

= K
(
D̃Lq(τ) + D̃Rq(τ)

)
, (58)

K = (uq + vq)
2
∣∣∣
q=0

=
√

2πvF − g0
2πvF + g0

. (59)

The chiral Green’s function

D̃pq(τ) = −〈Tτ {ρ̃pq(τ)ρ̃p−q(0)}〉 /L
will be calculated below to the zeroth order in the
quasiparticle interaction constant g̃′. Unlike expansion
in orders of g0 the perturbative expansion in orders
of g̃′ is a well-defined procedure: as we explained, the
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quasiparticle-quasiparticle interaction is irrelevant. With
accuracy O((g̃′)0) the propagator D̃pq can be expressed as
a convolution of two single-quasiparticle propagators:

D̃pq(τ) =

− 1
L

∑
k

〈
Tτ

{
ψ̃†

p(k+q)(τ)ψ̃p(k+q)(0)
}〉〈

Tτ

{
ψ̃pk(τ)ψ̃†

pk(0)
}〉
,

(60)

D̃pqω =
∑

k

n(ε̃p(k)) − n(ε̃p(k + q))
iω + ε̃p(k) − ε̃p(k + q)

. (61)

In equation (61) n(ε) is Fermi distribution function. Thus,
at T = 0:

D̃pqω =
p

4πṽ′Fq
log
{
iω − pṽFq + ṽ′Fq

2

iω − pṽFq − ṽ′Fq2

}
, (62)

Dqω =
K

4πṽ′Fq
log
{
ω2 + (ṽFq − ṽ′Fq

2)2

ω2 + (ṽFq + ṽ′Fq2)2

}
. (63)

This result has the accuracy of O((v′Fg0)
2), as explained

above. The omitted corrections are due to the quasiparti-
cle interaction g̃′. At the same time, the above expression
for D is accurate to all orders in the dispersion curvature
ṽ′F.

The retarded propagator Dqω is obtained by the ana-
lytical continuation:

Dqω =
K

4πṽ′Fq
log
{

(ṽFq − ṽ′Fq
2)2 − (ω + i0)2

(ṽFq + ṽ′Fq2)2 − (ω + i0)2

}
. (64)

For vanishing ṽ′F we can write for the Green’s function the
following expansion:

Dqω =
ṽFKq2

π((ω + i0)2 − ṽ2
Fq

2)

+
(ṽ′F)2Kq5

6π

(
1

(ω − ṽFq + i0)3
− 1

(ω + ṽFq + i0)3

)

+ O ((v′F)4
)

+ O ((v′Fg0)2) . (65)

The first term coincides with the well-known bosonization
result [2]. The second term could be also found within the
bosonization approach: one has to develop a perturbation
theory expansion in powers of ṽ′F. How this could be done
is shown in Appendix E. These calculations serve as yet
another consistency check for our method.

One can make another interesting observation when
examining (65). By looking at this expansion it is impos-
sible to guess that the propagator (64) has a branch-cut,
not a pole. To determine the correct complex structure
the non-perturbative in v′F calculations are required.

Such complex structure of the propagator indicates
that there is no coherently propagating bosonic mode [2].
Instead, we have a continuum of quasiparticle - quasihole
pair excitations. It is possible to visualize this continuum
by calculating the spectral function Bqω :

Bqω = − 2ImDqω =
K

2ṽ′Fq
{
ϑ
(
ω2 − (ṽFq − ṽ′Fq

2)2
)

− ϑ
(
ω2 − (ṽFq + ṽ′Fq

2)2
) }

sgn ω. (66)

q

ω

Fig. 2. When v′
F = 0 the spectral density of Dqω is delta-

function centered at ω = ṽFq line (dash line on the figure).
This is the dispersion curve of the TL bosons. For v′

F �= 0 the
spectral density is non-zero within the whole shaded area. This
area represents the continuum of the quasiparticle-quasihole
excitations. The TL bosons acquire finite life-time in such a
situation.

(Note: unlike single-fermion spectral function Bqω does
not have to be positive.) Every point of (q, ω) plane where
Bqω �= 0 corresponds to a quasiparticle - quasihole excita-
tion with total energy |ω| and total momentum q. The set
of these points is shown in Figure 2.

A previous attempt to account for non-zero v′F has
been made in [1,5]. However, the bosonic representation
used in the latter references is not very convenient for such
a task. To illustrate the nature of the problem we consider
a case of free electrons (g0 = 0) with strongly non-linear
dispersion v′FΛ ∼ vF:

Hfree = Hkin +Hnl. (67)

The quasiparticle representation is trivial: U = 1 and
ψ = ψ̃. The spectrum of (67) is

εk = vF|k| + v′Fk
2. (68)

Density-density correlation function is given by (63). In
the bosonization framework operator Hnl corresponds to
cubic interaction between bosons with the dimensionless
coupling constant v′FΛ/vF of order unity (see (48)). To
compute either spectrum or Green’s functions one must
resort to the perturbation theory whose accuracy, how-
ever, is not obvious due to lack of small parameter.

If in addition to v′F we have g0 �= 0 then the
Bogoliubov rotation of the TL bosons is required. When
the Bogoliubov transformation acts on Hnl it generates
extra interaction terms of the form ρ̃pρ̃

2
−p. The coupling

constant for this kind of interaction is of the order of v′Fg0.
Thus, in the bosonic representation one has to deal with
two kinds of interaction terms and two coupling constants
one of which is of the order of unity.

As we have seen in Section 3, if we add weak electron-
electron interaction Hint (Eq. (3)) to Hfree (Eq. (67)) the
quasiparticle representation evolves continuously with g0:
U = 1 + O(g0), H̃ ′ = Hfree + O(g0). Non-zero g0 gener-
ates interaction between the quasiparticles. Yet, this in-
teraction remains small (if (43) is fulfilled) and irrelevant.
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Consequently, the Green’s function is given by (63) with
renormalized vF and v′F, the spectrum of the interacting
Hamiltonian has the form (68). In short, the advantage of
the quasiparticle representation steams from its ability to
account for v′F non-perturbatively.

5 Single-electron Green’s function

Now we will show how to calculate the single-electron
Green’s function. At present we can find the Green’s
function for the case of v′F = 0 only. Although, this
Green’s function has been evaluated before by a number
of approaches we would like to include this derivation to
demonstrate different aspects of the method.

In order to calculate the single-electron Green’s func-
tion it is necessary to know how to express the electron
field operator ψ† in terms of the quasiparticle operators ψ̃†
and ρ̃. The following derivation answers this question. We
begin by introducing unitary operator exp(ϕp(x)) where

ϕp(x) =
∑
q �=0

βpq

nq
eiqxρpq, βpq − real coefficients. (69)

Let us calculate the commutator of this operator with ρpq:[
eϕp(x), ρpq

]
=
(
eϕp(x)ρpqe−ϕp(x) − ρpq

)
eϕp(x). (70)

The first term in brackets can be calculated easily:

eϕp(x)ρpqe−ϕp(x) = ρpq + [ϕp(x), ρpq ] = ρpq + βp−qpe−iqx.
(71)

Thus, the formula for the commutator is:

[eϕp , ρpq] = pβp−qe−iqxeϕp . (72)

If we choose βpq = p the product ψ†
pe

ϕp commute with
ρp′q for any p′ and q �= 0. Therefore, it commutes with
Ω, equation (9). This means that such product is invari-
ant under the action of U . The action of U on the field
operator is given by:

ψ̃†
p = U †ψ†

pU = ψ†
pe

ϕpU †e−ϕpU. (73)

The latter formula is easy to invert:

ψ†
p(x) = ψ̃†

p(x)e
ϕ̃p(x)Ue−ϕ̃p(x)U † = ψ̃†

p(x)F̃†
p (x), (74)

F̃†
p(x) = exp


−p

∑
q �=0

1
nq

eiqx (wq ρ̃pq + vqρ̃−pq)


 , (75)

[
ψ̃†

p(x), F̃†
p(x)

]
= 0, (76)

wq = uq − 1. (77)

It gives us the desired equation for ψ† in terms of ψ̃† and
ρ̃.

Let us calculate the correlation function:
〈
ψ†

p(x, τ)ψp(0, 0)
〉

=
〈
ψ̃†

p(x, τ)F̃†
p (x, τ)F̃p(0, 0)ψ̃p(0, 0)

〉
.

(78)

The simplest way to evaluate this expression is to trans-
form it in the following manner. The density operators
with pnq < 0(pnq > 0) must be shifted to the left (right)
end, the quasiparticle field operators stay in the middle.
The reason for such choice is that ρ̃pq |0〉 = 0 for pnq > 0
and 〈0| ρ̃pq = 0 for pnq < 0 where |0〉 is the ground state
of (1). The details of this derivation are given in Appendix
F. The result is

〈
ψ†

p(x, τ)ψp(0, 0)
〉

=
〈
ψ̃†

p(x, τ)ψ̃p(0, 0)
〉

exp

{
−
∑

q

(1 − eiqx−ṽF|q|τ )
v2

q

|nq|

}
=

1
2π(ipx− ṽFτ)

(
a2

x2 + ṽ2
Fτ

2

)θ

, (79)

where we used the notation θ = 2v2
q |q=0 = (K+1/K−2)/2.

The same formula is derived using bosonization [1,2].
It is well-known fact that the above Green’s function

does not have pole. This means that the quasiparticle state
has zero overlap with the physical electron state.

6 Discussion

In this paper we solve the TL model with the help of
the unitary transformation. The transformation maps the
original Hamiltonian on the Hamiltonian of weakly inter-
acting quasiparticles.

Our approach easily incorporates deviation of the elec-
tron dispersion from the linear form. As long as the
bare interaction constant is sufficiently small two new
non-perturbative results (Eqs. (44) and (63)) can be de-
rived. The derived results accounts for the curvature pa-
rameter ṽ′F to all orders; they contain errors of order
(g̃′)2 ∼ (v′Fg0)

2 due to neglected interaction among the
quasiparticles.

The ability of our method to account for ṽ′F to all
orders allows us to resolve the complex structure of the
density-density propagator.

In principle, our diagonalization technique is not the
only way to derive the quasiparticle representation. It
is possible (Fig. 1) to bosonize (1) then perform the
Bogoliubov transformation and then fermionize the di-
agonal bosonic Hamiltonian [6,7]. Alternatively, one can
construct non-fermionic excitations using appropriate ex-
ponents of bosonic operators [8]. In our case use of
bosonization looks like an unnecessary detour.

To conclude, we propose a unitary transformation
which maps TL model on a model of free fermions. Such
approach reproduces or generalizes the TL correlation
functions calculated using bosonization.

The author is grateful to D.P. Arovas, A. Castro Neto, F.
Guinea, A.J. Millis for useful discussions. The author would
like to thank the referees who suggested writing Appendices D
and E. Support of the “Dynasty” foundation of Dmitri Zimin
is gratefully acknowledged.
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Appendix A

In order to differentiate products of field operators one
must perform normal ordering of the product under con-
sideration. The subject of this Appendix is the definition
of the normal ordering procedure we use in this paper.

Most commonly a normal ordered product of two or
more field operators is defined with the reference to some
non-interacting ground state |0〉. For example, for product
of two operators such definition reads:

:ψ†(x)ψ(x′) : = ψ†(x)ψ(x′) − 〈0|ψ†(x)ψ(x′) |0〉 . (80)

The ground state is not specified in this equation. Thus,
we actually have infinite number of normal ordering pro-
cedures, each corresponding to a particular state |0〉. Usu-
ally, the problem at hand dictates the choice of this state.

Normal ordered product (80) possesses two properties:
(i) it is well-defined and analytical at x = x′; (ii) its ground
state expectation value is zero.

Since the ground state of the Tomonaga-Luttinger
Hamiltonian cannot be approximated by a ground state
of non-interacting physical fermions ψ TL ground state
cannot be used in (80). Consequently, it is necessary to
explain what state we use in our definition of the normal
order.

In the bosonization framework it is customary [1,4] to
normal order with respect to the the ground state of the
Hamiltonian:

H0 =
∑

k

vFpkc
†
kck. (81)

We accept this definition in our work as well. Thus, for a
product of two field operators we have:

:ψ†
p(x)ψp(x′) : = ψ†

p(x)ψp(x
′) − sp(x− x′), (82)

sp(x) =
p

2πi(x− ip0)
, (83)

where sp is equal to 〈0|ψ†
p(x)ψp(x′) |0〉. In this equation

the pole of ψ†
p(x)ψp(x′) at x = x′ is explicitly shown. The

normal ordered product is well-behaved at x = x′ and it
satisfies the property (i), formulated above.

It is not a miracle that property (i) remains intact
despite the fact that the ground states of (1) and (81) are
drastically different. Note that (i) is “ultraviolet” in its
nature – it refers to short distance (|x− x′| 	 1/Λ), high
energy (|k|  Λ) behavior of the operator product. Since
interaction (3) is limited in q-space, high-energy structure
of the TL ground state is the same as that of (81). This
guarantees that (i) is satisfied.

Yet, the TL ground state expectation value of (82) for
generic values of x and x′ is not zero. That is, property
(ii) is violated. Fortunately, we never need it in this paper.

The normal ordered product of four field operators is
defined by the equation:

ψ†
p(x)ψp(x′)ψ†

p(y)ψp(y
′) = :ψ†

p(x)ψp(x
′)ψ†

p(y)ψp(y
′) :

+ sp(x − y′) :ψp(x
′)ψ†

p(y) : (84)

+ sp(x′ − y) :ψ†
p(x)ψp(y

′) :

+ sp(x − y′)sp(x′ − y). (85)

As above, the normal ordered product can be differenti-
ated everywhere.

For completeness, let us define the normal ordering of
the density operators ρp(x):

:ρp(x)ρp(y) : = ρp(x)ρp(y) − bp(x− y), (86)
:ρp(x)ρp(y)ρp(z) : = ρp(x)ρp(y)ρp(z) − bp(x− y)ρp(z)

− bp(x− z)ρp(y)
− bp(y − z)ρp(x), (87)

bp(x) = (sp(x))2. (88)

We will use these definitions in Appendix C.
The above rules can be generalized for T > 0: to nor-

mal order a product of density operators at finite temper-
ature one has to replace function bp(x) by function:

bpT (x) = 〈ρ̃p(x)ρ̃p(0)〉 = − T 2

4ṽ2
F sinh2(πT (x/ṽF − ip0))

.

(89)

It is obvious that bpT = bp at T = 0. In Appendix D we
will need the finite T definition.

Appendix B

In this Appendix we provide the derivation of (30) starting
from the formula (27). To express the Hamiltonian (27) in
terms of ψ rather than ρ we introduce a function ∆q:

∆q = u2
q + v2

q +
gq

πvF
uqvq − 1 (90)

and its Fourier transform ∆̂(x):

∆̂(x) =
∑

q

(
u2

q + v2
q +

gq

πvF
uqvq − 1

)
eiqx. (91)

We defined gq such that gq → 0 when |q| → ∞. Thus,
vq → 0, uq → 1 for |q|  Λ. Therefore, the function ∆q

vanishes for large |q|. This implies that ∆̂(x) vanishes for
|x|  1/Λ. We may write:

UHU † =
πvF
L

∑
pq

ρpqρp−q +
πvF
L

∑
pq

∆qρpqρp−q

= ivF

∫
dx
∑

p

p : ψ†
p∇ψp :

+
πvF
L

∑
p

∫
dxdx′∆̂(x− x′)ρp(x)ρp(x′). (92)

The first term in the above equation was obtained by in-
version of (19). The second term must be normal ordered
first:

πvF
L

∑
p

∫
dxdx′∆̂(x− x′)ρp(x)ρp(x′) =

πvF
L

∑
p

∫
dxdx′∆̂(x− x′) {bp(x− x′)+:ρp(x)ρp(x′) : } .

(93)



A.V. Rozhkov: Fermionic quasiparticle representation of Tomonaga-Luttinger Hamiltonian 201

The additive constant proportional to
∫
dxdx′∆̂bp will be

disregarded. The normal ordered product of two ρ’s can
be expanded into Taylor series in powers of (x − x′):

∑
p

∫
dxdx′∆̂(x− x′) :ρp(x)ρp(x′) : =

∑
p

[∫
dx′∆̂(x′)

] ∫
dx :ρ2

p(x) :

+
1
2

[∫
dx′x′2∆̂(x′)

] ∫
dx :ρp(x)∇2ρp(x) : + . . . , (94)

where ellipsis stand for higher order terms of the Taylor
series. Since ∆̂(x) vanishes for large |x| the integrals of ∆̂
are well-defined. We did not show the term proportional
to : ρp∇ρp : since it is total derivative ∇ : ρ2

p : , thus, it
vanishes upon integration.

We notice that the first term of expansion (94) is
marginal. All other terms are irrelevant. Indeed, power
counting shows that the scaling dimension of the operator
:ρp∇2ρp : is 4 > 2. The scaling dimensions of the omitted
terms are even higher. Thus, it is permissible to write:

πvF
L

∑
p

∫
dxdx′∆̂(x− x′)ρp(x)ρp(x′) =

πvF∆0

∑
p

∫
dx :ρ2

p(x) : + (irrelevant operators), (95)

∆0 = ∆q

∣∣
q=0

. (96)

Consequently, transforming :ρ2
p : into the kinetic energy

operator with the help of (19) and substituting the result
into (92), we get the desired equation:

UHU † =∫
dx
∑

p

ipṽF : ψ†
p∇ψp : +(irrelevant operators), (97)

ṽF = vF(1 +∆0) = vF

(
u2

q + v2
q +

gq

πvF
uqvq

)∣∣∣∣
q=0

= vF

√
1 −

(
g0

2πvF

)2

. (98)

Note, that the omitted operators, in addition to being
irrelevant, are also small (∼ ∆0 ∼ g2

0/v
2
F) if interaction is

small g0 	 vF.

Appendix C

In this Appendix we show how Hnl can be expressed in
terms of the quasiparticle field operators ψ̃†, ψ̃. We start

with expression for the local density Hnl:

Hnl(x) = v′F
∑

p

:(∇ψ†
p(x))(∇ψp(x)) : − 1

6
∇2ρp(x) (99)

=
4π2v′F

3

∑
p

lim
z→x

lim
y→x

{
ρp(z)

[
ρp(x)ρp(y) − bp(x− y)

]

− 2bp(z − y)ρp(y)
}
.

The last line can be abbreviated if one use the definition of
the normal ordering for the density operators ρp(x), equa-
tion (87). With this notation we can rewrite the formula
for Hnl:

Hnl =
4π2v′F

3

∑
p

:ρ3
p : . (100)

To express the density operator ρp(x) in terms of the
quasiparticle density operators ρ̃p(x) we must remember
that:

ρpq = uqρ̃pq + vq ρ̃−pq for q �= 0, (101)

Np = Ñp for zero modes. (102)

Therefore, the density operator in co-ordinate space is
equal to:

ρp(x) = δρ̃p0 + ρ̃u
p(x) + ρ̃v

−p(x), (103)

δρ̃p0 =
(
(1 − uq)Ñp − vqÑ−p

)∣∣∣
q=0

, (104)

where ρ̃u
p is the convolution of the density operator ρ̃p(x)

with û(x):

ρ̃u
p(x) = (û ∗ ρ̃p)(x) =

∫
dx′û(x− x′)ρ̃p(x′), (105)

û(x) =
∫

dq

2π
uqeiqx. (106)

Likewise, ρ̃v
−p = (v̂ ∗ ρ̃−p)(x), where function v̂(x) is de-

fined in the same manner as û(x). It is tempting to equate
Hnl and

4π2v′F
3

∑
p

:
(
δρ̃p0 + ρ̃u

p + ρ̃v
−p

)3 : . (107)

This, however, is not exactly accurate since the normal or-
dering and Bogoliubov transformation do not “commute”
with each other. Such phenomena becomes obvious if we
were to think in terms of Bose creation and annihilation
operators. Normal ordering places all creation operators
to the left of all annihilation operators. Bogoliubov trans-
formation mixes creation and annihilation operators, thus,
it spoils normal ordering.
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To rewrite Hnl in terms of ρ̃u,v correctly let us first ex-
amine the expression in square brackets in equation (99):

ρp(x)ρp(y) − bp(x − y) =:ρp(x)ρp(y) : =(
δρ̃p0 + ρ̃u

p(x) + ρ̃v
−p(x)

) (
δρ̃p0 + ρ̃u

p(y) + ρ̃v
−p(y)

)
−bp(x− y) ={
:ρ̃u

p (x)ρ̃u
p (y) : + (û ∗ bp ∗ û)(x− y) − bp(x− y)

}

+
{

:ρ̃v
−p(x)ρ̃

v
−p(y) : + (v̂ ∗ b−p ∗ v̂)(x− y)

}
+
{
ρ̃u

p(x)ρ̃v
−p(y) + ρ̃v

−p(x)ρ̃
u
p (y)

}
+δρ̃p0

{
ρ̃u

p (x) + ρ̃v
−p(x) + ρ̃u

p(y) + ρ̃v
−p(y)

}
+δρ̃2

p0, (108)

where we applied the following transformations:

ρ̃u
p (x)ρ̃u

p (y) =∫
dx′dy′u(x− x′)u(y − y′)ρ̃p(x′)ρ̃p(y′) =

∫
dx′dy′u(x−x′)u(y−y′)(:ρ̃p(x′)ρ̃p(y′) :+bp(x′−y′)

)
=

:ρ̃u
p(x)ρ̃u

p (y) : + (û ∗ bp ∗ û). (109)

Similar transformations could be done for ρ̃v(x)ρ̃v(y).
Since u2

q − v2
q = 1 the identity:

û ∗ f ∗ û = f + (v̂ ∗ f ∗ v̂) (110)

holds true. Therefore:

:ρp(x)ρp(y) : =:
(
ρ̃u

p(x) + ρ̃v
−p(x)

) (
ρ̃u

p(y) + ρ̃v
−p(y)

)
:

+ (v̂ ∗ (bp + b−p) ∗ v̂) (x− y) (111)

+δρ̃p0

{
ρ̃u

p (x) + ρ̃v
−p(x) + ρ̃u

p(y) + ρ̃v
−p(y)

}
+ δρ̃2

p0.

The extra terms in this formula are non-singular functions
of (x − y). In particular:

(v̂ ∗ (bp + b−p) ∗ v̂) (x−y)=
∫

dq

(2π)2
eiq(x−y)|q|v2

q .(112)

Observe that the normal ordered product of ρ’s differs
from the normal ordered product of ρ̃’s by a non-singular
operator.

Generalizing the above calculations for the product of
three ρ’s we obtain the following expression for Hnl:

Hnl =
4π2v′F

3

∑
p

:(ρ̃u
p )3 : +:(ρ̃v

−p)
3 : + 3ρ̃u

p :(ρ̃v
−p)

2 :

+3ρ̃v
−p :(ρ̃u

p )2 : + c̃
(
δρ̃p0 + ρ̃u

p + ρ̃v
−p

)
+ (z.m.), (113)

c̃ =
3

4π2

∫
dq|q|v2

q , (114)

where “z.m.” stand for zero modes terms which vanish in
the thermodynamic limit.

For small momenta the above formula can be simpli-
fied. What must be done, in its substance, amounts to
inversion of equations (100) and (19). To illustrate this
statement, consider the first and the second terms of (113).

Limiting ourselves to the case Λ = ∞ we can neglect the
q-dependence of uq and vq. Then, ρ̃u

p = uρ̃p, ρ̃v
p = vρ̃p and

it is possible to write:

4π2v′F
3

∑
p

:(ρ̃u
p)3 : +: (ρ̃v

p)
3 : =

4π2v′F
3

(u3 + v3)
∑

p

:ρ̃3
p : =

v′F(u3 + v3)
(

:∇ψ̃†
p∇ψ̃p : − 1

6
∇2ρ̃p

)
. (115)

When handling the third and the fourth terms of (113) we
are to act in the similar fashion: the product : ρ̃2

p : should
be rewritten in terms of ψ̃ with the help of (19). These
two terms give the quasiparticle interaction.

For a finite value of Λ our task becomes somewhat
more complicated. In such a situation one can generalize
the procedure of Appendix B. Let us briefly discuss the
core of this generalization. As an example, consider the
expression:

: (ρ̃v
p)3 : =

∫
dx′dx′′dx′′′v(x− x′)v(x− x′′)v(x − x′′′)

× : ρ̃p(x′)ρ̃p(x′′)ρ̃p(x′′′) : . (116)

It is easy to show with the help of Taylor ex-
pansion (see Appendix B) that the normal or-
dered product : ρ̃p(x′)ρ̃p(x′′)ρ̃p(x′′′) : is equal to

: ρ̃3
p(x) : + (more irrelevant operators),

where ‘more irrelevant operators’ stands for operators
whose scaling dimension is bigger than 3. Therefore, we
obtain the following equation:

: (ρ̃v
p)3 : = a : ρ̃3

p : + (more irrelevant operators), (117)

where coefficient a is equal to v3
q |q=0. The expression : ρ̃3

p :
has to be transformed further as in equation (115). The
remaining terms of (113) are transformed similarly. There-
fore, one establishes:

Hnl =
∑

p

{
ṽ′F :(∇ψ̃†

p)(∇ψ̃p) : − ṽ′F
6
∇2ρ̃p

+ ipg̃′ρ̃−p

(
:ψ̃†

p(∇ψ̃p) : − :(∇ψ̃†
p)ψ̃p :

)}
(118)

+ µ̃(ρ̃L + ρ̃R) + (more irrelevant operators),
ṽ′F = v′F

(
u3

q + v3
q

)∣∣
q=0

, (119)

g̃′ = 2πv′F
(
u2

qvq + uqv
2
q

)∣∣
q=0

, (120)

µ̃ = v′F

(∫
dq|q|v2

q

)
. (121)

The values of uq and vq are given by (23). Finally, we find
for the Hamiltonian:

Hnl =
∑

p

∫
dx
{
ṽ′F : (∇ψ̃†

p)(∇ψ̃p) :

+ ipg̃′ρ̃−p

(
: ψ̃†

p(∇ψ̃p) : − : (∇ψ̃†
p)ψ̃p :

)

+ µ̃ρ̃p

}
+ (more irrelevant operators). (122)
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We omitted the full derivative ∇2ρ from the Hamiltonian
since it contributes on the system boundary only.

We don’t want to prove here that the quasiparticle in-
teraction produces no ultraviolet divergence of the pertur-
bation theory. Instead, this issue is examined at the end
of Appendix F. This is because the formalism developed
there is particularly convenient for discussion of ultravio-
let properties of the quasiparticle interaction.

Finally, let us briefly explain, why the quasiparticle
interaction generated by the action of U on Hnl is small.
This explanation is equivalent to the one given in Sec-
tion 3. Initially, our Hnl could be expressed as a cube
of ρp(x), equation (100). (Although, superficially, this ex-
pression appears to be sixth order in ψp, a subtler analysis
shows that it is quadratic in ψp, Eq. (99).) The Bogoliubov
transformation U converts (100) into (113). Unlike (100),
equation (113) is indeed a sixth order polynomial in ψp.
However, for small g0 operator U is close to the identity
transformation: U = 1 + O(g0). Therefore,

v′F :ρ3
p : = v′F :ρ̃3

p : + O(g0v′F). (123)

The first term on the right is proportional to ∇ψ̃†
p∇ψ̃p,

equation (100). All generated terms, such as quasiparticle
interactions and corrections to v′F, are O(g0v′F).

Appendix D

In this Appendix we show how the result for the specific
heat, equation (45), can be obtained within the bosoniza-
tion framework. More specifically, O((v′F)2) correction to
the specific heat will be calculated with the help of the
perturbation theory for the free boson Hamiltonian:

H =
πṽF
2

∑
pq

ρ̃pqρ̃p−q. (124)

We will see that it is the same as O((v′F)2) term in equa-
tion (45).

Our first step is to rewrite the non-linear dispersion
Hamiltonian Hnl in a form particularly suitable for T >
0 calculations: since in this Appendix we work at finite
temperature it is natural to express Hnl with the help of
the finite temperature generalization of (86) and (87). As
it was explained, such generalization is achieved by placing
bpT , equation (89), instead of bp, equation (88).

Using the new rules of the normal ordering we could
prove that at T ≥ 0 the following is true:

ṽ′F
∑

p :(∇ψ̃†
p(x))(∇ψ̃p(x)) : − 1

6∇2ρ̃p(x) =
4π2ṽ′

F
3

∑
p :ρ̃3

p : + T 2

4ṽ2
F
ρ̃p, (125)

where : . . . : denotes here the finite temperature normal
order. The proof of this equation is simple. Start from

equation (38):

ṽ′F
∑

p

:(∇ψ̃†
p(x))(∇ψ̃p(x)) : − 1

6
∇2ρ̃p(x) = (126)

4π2ṽ′F
3

∑
p

lim
y→x

lim
z→y

{
ρ̃p(x)

[
ρ̃p(z)ρ̃p(y) − bp(z−y)

]

−2bp(x− y)ρ̃p(y)
}

=

4π2ṽ′F
3

∑
p

lim
y→x

lim
z→y

{
ρ̃p(x)

[
ρ̃p(z)ρ̃p(y) −bpT (z−y)]

−2bpT (x− y)ρ̃p(y)
}

+3ρ̃p(x) lim
y→x

{bpT (x − y) − bp(x− y)} .
The last limit is

lim
y→x

{bpT (x− y) − bp(x− y)} =
T 2

12ṽ2
F

. (127)

Thus, bosonized Hnl equals to

Hnl =
4π2ṽ′F

3

∑
p

∫
dx

(
:ρ̃3

p : +
T 2

4ṽ2
F

ρ̃p

)
+ O(g0v′F).

(128)

This formula does not imply that Hnl depends on the tem-
perature. In this Appendix the symbol : . . . : denotes
the finite T generalization of the normal ordering, conse-
quently, the expression :ρ̃3 : varies with temperature. The
T 2 term compensates the temperature dependence of the
normal ordered product :ρ̃3 : so that Hnl is temperature
independent as it must be. We remind the reader that
such a way of writing is a matter of convenience.

In the above expression we ignore the quasiparticle
interaction and the correction to the chemical potential
since we are interested in O((v′F)2) corrections only while
the neglected terms contribute to the thermodynamics at
O((v′Fg0)

2).
The correction to the free energy due to Hnl is given

by the usual perturbation theory formula:

δF = −1
2

∫
dτ〈Hnl(τ)Hnl(0)〉 =

− (ṽ′F)2L
∫
dτdx

(16π4

9
〈 :ρ̃3

L(x, τ) : :ρ̃3
L(0, 0): 〉

+
π4T 4

9ṽ4
F

〈ρ̃L(x, τ)ρ̃L(0, 0)〉
)
. (129)

Using Wick’s theorem we find:

〈 :ρ̃3
L(x, τ) : :ρ̃3

L(0, 0): 〉 = 6〈ρ̃L(x, τ)ρ̃L(0, 0)〉3, (130)

〈ρ̃L(x, τ)ρ̃L(0, 0)〉 = − T 2

4ṽ2
F sinh2(πT (x/ṽF−iτ))

. (131)

Therefore:

δF = (ṽ′F)2L
∫
dτdx

(π4T 6

6ṽ6
F

1
sinh6(πT (x/ṽF − iτ))

+
π4T 6

36ṽ6
F

1
sinh2(πT (x/ṽF − iτ))

)
. (132)
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It is easy to calculate the integral

∫ +∞

−∞

dx

sinh2(πT (x/ṽF − iτ))
= −2ṽF

πT
(133)

for 0 < τ < β. To find the integral of 1/ sinh6 we use a
trick. One can check directly that:

1
sinh6 r

=
8
15

1
sinh2 r

+
d2I(r)
dr2

, (134)

I(x) =
1
20

1
sinh4 r

− 2
15

1
sinh2 r

. (135)

The integral of the full derivative is zero and we establish
for 0 < τ < β

∫ +∞

−∞

dx

sinh6(πT (x/ṽF − iτ))
=

8
15

∫ +∞

−∞

dx

sinh2(πT (x/ṽF − iτ))
= − 16ṽF

15πT
. (136)

Therefore, one finds the following corrections to the free
energy, the entropy and the specific heat:

δF/L = −7π3(ṽ′F)2T 4

30ṽ5
F

, (137)

δS/L = −∂(δF/L)
∂T

=
14π3(ṽ′F)2T 3

15ṽ5
F

, (138)

δC = T
∂(δS/L)
∂T

=
14π3(ṽ′F)2T 3

5ṽ5
F

. (139)

The last expression coincides with the second term of
equation (45) as it should be.

Appendix E

In this Appendix we calculate O((v′F)2) correction to the
zero-temperature boson propagator. Such correction must
coincide with the second term of (65).

The correction in question to the chiral Matsubara
propagator comes from Hnl, equation (128), with T = 0.
The appropriate Feynman diagram is shown in Figure 3.
As one can see from equation (58) the corresponding ex-
pression is:

δDp(x, τ) = −K
2

(
4π2ṽ′F

3

)2 ∫
dτ ′dτ ′′dx′dx′′〈Tτ

{
ρ̃p(0, 0)

× : ρ̃3
p(x

′, τ ′) : : ρ̃3
p(x

′′, τ ′′) : ρ̃p(x, τ)
}
〉 con−

nected
+ O((v′Fg0)

2).

(140)

��
�

�
��

�

�

��
�

�
��

�

�

Fig. 3. Correction to D̃0
pq due to the dispersion curvature.

Wavy lines correspond to D̃0, the vertexes are proportional to
ṽ′
F [9].

The time-ordered average with respect to Hamilto-
nian (124) is equal to:∫

dτ ′dτ ′′dx′dx′′〈Tτ

{
ρ̃p(0, 0)

× : ρ̃3
p(x

′, τ ′) : : ρ̃3
p(x

′′, τ ′′) : ρ̃p(x, τ)
}
〉 con−

nected
= (141)

3 × 3 × 2 × 2
∫
dτ ′dτ ′′dx′dx′′D̃0

p(τ ′, x′)

×
(
D̃0

p(τ ′′ − τ ′, x′′ − x′)
)2

D̃0
p(τ − τ ′′, x− x′′),

where D̃0
p(x, τ) is the chiral free boson Green’s function

D̃0
p(x, τ) = −(1/L)〈Tτ {ρ̃p(0, 0)ρ̃p(x, τ)}〉 for Hamiltonian

(124).
The numerical factor on the right-hand side of (141)

corresponds to 36 possible ways of contracting the density
operators into a connected diagram presented in Figure 3.
First, the external operator ρ̃p(0, 0) could contract with ei-
ther of two vertexes; the operator ρ̃p(x, τ) contracts with
the remaining vertex. This gives a factor of two. Second,
a given external operator could contract with either of
three density operators in a vertex. This gives a factor of
three for one external operator and another factor of three
for the second external operator. Finally, after contracting
with the external operators, every vertex has two uncon-
tracted density operators. For them there are two ways of
contraction. Thus, we have yet another factor of two.

In the Fourier space we can write:

Dpqω ≈ KD̃0
pqω + 32π4K(ṽ′F)2

(
D̃0

pqω

)2

Π̃pqω , (142)

D̃0
pqω =

1
2π

pq

iω − pṽFq
, (143)

Π̃pqω = −T
∑
Ω

∫
dk

2π
D̃0

pkΩD̃0
p(q−k)(ω−Ω)

=
1

48π3

pq3

iω − pṽFq
. (144)

Therefore, for correction to the full propagator we write:

δDqω =
∑

p

δDpqω

=
K(ṽ′F)2q5

6π

(
1

(iω − ṽFq)3
− 1

(iω + ṽFq)3

)
.(145)

After analytical continuation we recover the O((v′F)2)
term of (65).
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Appendix F

In this Appendix we provide a detailed derivation of the
single-electron Green’s function for TL model, equation
(79). The formalism developed for the Green’s function
is also a convenient tool to prove that the quasiparticle
perturbation theory has no ultraviolet divergences.

We start with equation (78). First, the product F̃†
pF̃p

has to be normal-ordered:

F̃†
p(x, τ)F̃p(0, 0) = eWp(x+ipy,0)e−W†

p(x+ipy,0)

×eVp(x−ipy,0)e−V†
p(x−ipy,0) (146)

×e−p
∑

q
1

nq
(1−eiqx−pqy)w2

qϑ(pq)ep
∑

q
1

nq
(1−eiqx+pqy)v2

qϑ(−pq)
,

Wp(x, x′) = p
∑

q
1

nq

(
eiqx′−eiqx

)
wq ρ̃pqϑ(−pq),(147)

Vp(x, x′) = p
∑

q
1

nq

(
eiqx′ − eiqx

)
vq ρ̃−pqϑ(pq). (148)

Here y = ṽFτ . This equation was derived with the help of
commutation relations (5). In order to calculate ρ̃(τ) we
used the expression (20).

Second, we transform the whole expression
ψ̃†

p(x, τ)F̃†
p (x, τ)F̃p(0, 0)ψ̃p(0, 0). We shift exp(Wp)

to the left past the quasiparticle field operator ψ̃†
p. The

exponent exp(−W†
p) is shifted to the very right. To

perform these shifts the commutation rule (6) has to be
used.

ψ̃†
p(x, τ)F̃†

p (x, τ)F̃p(0, 0)ψ̃p(0, 0) ={
eWp(x+ipy,0)

(
ψ̃†

p(x, τ)ψ̃p(0, 0)
)
e−W†

p(x+ipy,0)
}

(149)

×
(
eVp(x−ipy,0)e−V†

p(x−ipy,0)
)

×e−p
∑

q
1

nq
(1−eiqx−pqy)(w2

q+2wq)ϑ(pq)

×ep
∑

q
1

nq
(1−eiqx+pqy)v2

qϑ(−pq)
.

After taking the expectation value of this expression and
recalling that w2

q +2wq = v2
q we obtain the desired expres-

sion for the correlation function.
The above formula sets a convenient background for

a rather general discussion of the ultraviolet properties of
the quasiparticle-quasiparticle interactions. Imagine that
we add the following term to the TL Hamiltonian:

Hextra =
∑

p

∫
dxdx′Ẑ(x− x′)ψ†

p(x)ψp(x
′). (150)

Operator Hnl is a particular case of Hextra with Ẑ = −ĥ′′.
With the help of (149) it is easy to rewrite Hextra in

terms of the quasiparticle operators ψ̃ and ρ̃:

Hextra =
∑

p

∫
dxdx′Ẑ(x − x′)ζ(x − x′)

×
{
eWp(x,x′)

(
ψ̃†

p(x)ψ̃p(x
′)
)

e−W†
p(x,x′)

}

×
(
eV−p(x,x′)e−V†

−p(x,x′)
)
, (151)

ζ(x) = e
∑

q
1

|nq| (1−eiqx)v2
q . (152)

Function ζ(x) is well-defined for |x| 	 1/Λ and van-
ishes algebraically for large |x|. Operator (151) is normal-
ordered, therefore, it is safe to expand the exponentials:

Hextra =
∑

n,m,n′,m′
Hnmn′m′

=
∑

n,m,n′,m′

∫
dxdx′

Ẑζ

n!m!n′!m′!

× Wn
p ψ̃

†
pψ̃p(−W†

p)
mVn′

p (−V†
p)

m′
. (153)

Since W = O(g2
0) and V = O(g0) such expansion is con-

trolled by the smallness of g0. We want to argue that any
interaction termHnmn′m′ , n+m+n′+m′ > 0 does not lead
to ultraviolet divergence of perturbation theory. Consider,
for example, the second order correction to the ground
state energy:

δEnn′ =−
∑
N

∑
p1...pN
k1...kN

∣∣∣
〈

p1...pN

k1...kN

∣∣∣Hn0n′0

∣∣∣0
〉∣∣∣2∑

i ε̃(pi) + ε̃(ki)
δ
(∑

i

pi + ki

)
.

(154)

Summation in the above formula goes over N ≤ n+n′+1
quasiparticle momenta pi and over N quasihole momenta
ki. We includem = m′ = 0 terms only because other terms
annihilate the ground state. Thus, m,m′ �= 0 terms do not
contribute to the second order ground state correction.
They do, however, contribute to higher order corrections
and to corrections to different propagators.

If the matrix element does not vanish at large mo-
menta the expression (154) suffers from the ultraviolet
divergence. We will show that the matrix element goes to
zero if at least one |pi| or |ki| exceeds 2(n+ n′)Λ.

Let us examine definitions of W and V. Since vq and
wq vanishes for |q| > Λ every individual operator W,V
changes the total momentum by no more than Λ. Thus,
momentum change produced by (WnVn′

) is no more than
(n+ n′)Λ. We will use this information in our next step.

First step in evaluating the matrix element from (154)
is creation of a quasiparticle-quasihole pair by applying
ψ̃†ψ̃ product to |0〉. Since the total momentum of all ex-
citations is zero the momentum of this pair cancels the
momentum of (WnVn′

). Thus, the pair momentum mag-
nitude is limited by (n+n′)Λ. Two elementary excitations,
quasiparticle and quasihole, of which the pair is composed
have their momenta bound by (n+ n′)Λ.

As we explained above, by acting on the ground state
the product ψ̃†ψ̃ creates an excited state with a quasipar-
ticle and a quasihole. On this state the operator (WnVn′

)
acts creating yet another excited state. Every individual
operator V or W when acting on a state with finite num-
ber of the elementary excitations can either (i) create an-
other quasiparticle-quasihole pair or (ii) replace an ele-
mentary excitation with another one of the same chirality
and charge but different momentum.

In case (i) both newly created elementary excitations
have their momenta bound by Λ. This is because single W
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or V operator cannot make quasiparticle-quasihole exci-
tation with total momentum higher than Λ.

In case (ii) an individual operator W or V can change
momentum of an elementary excitation by no more that
Λ. As above, this is a consequence of vq and wq vanish-
ing at |q| > Λ. Therefore, the product (WnVn′

) cannot
change momentum of an elementary excitation by more
than (n + n′)Λ. Consequently, momentum of an elemen-
tary excitation is bound by 2(n+ n′)Λ.

This means that in (154) summation is effectively per-
formed over a sphere |ki| < 2(n+ n′)Λ, |pi| < 2(n+ n′)Λ.
Thus, this expression has no ultraviolet divergence.

The above argument can be easily generalized to other
perturbation theory formulas to prove that the perturba-
tion theory for the quasiparticles has no ultraviolet diver-
gences.

The absence of the ultraviolet divergences, together
with irrelevance of the quasiparticle - quasiparticle inter-
action, implies that the quasiparticle perturbation theory
is well-defined.
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